・基础研究・

喉癌组织中微小 RNA-129-2 基因甲基化程度的研究

杜 晨1,鲁凤民2,刘仲奇1,马芙蓉1

(1. 北京大学第三医院 耳鼻咽喉头颈外科,北京 100191;2. 北京大学医学部 病原微生物系,北京 100191)

摘要:目的研究喉癌肿瘤组织中微小RNA-129-2基因(MiR-129-2)的甲基化程度及 其与患者临床分级和癌组织病理分化程度的关系。方法 应用Methyl-Profiler[™]DNA甲基化PCR 系统对12例喉癌肿瘤组织和6例癌旁组织进行甲基化分析。结果 喉癌组织中MiR-129-2高 甲基化率为66.7%(8/12),癌旁组织中MiR-129-2高甲基化率为0(0/6),两组比较差异有 统计学意义(P<0.05)。喉癌患者临床分级与MiR-129-2高甲基化率差异无统计学意义(P> >0.05)。病理分化程度与MiR-129-2高甲基化率差异无统计学意义(P>0.05)。结论 MiR-129-2基因在喉癌组织中甲基化水平升高,MiR-129-2高甲基化水平可能与喉癌发生的病 理机制有关。

关 键 词: 喉肿瘤,癌; 微小 RNA; 甲基化 中图分类号: R739.65 文献标识码: A 文章编号: 1007 - 1520(2011)06 - 0406 - 07

Methylation of MicroRNA - 129 - 2 in Laryngeal Cancer

DU Chen, LU Feng-min, LIU Zhong-qi, et al.

(Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China)

Abstract : Objective To assess the methylation level of MicroRNA-129-2 (MiR-129-2) in laryngeal cancer. **Methods** We applied Methyl-ProfilerTM DNA PCR Array System (SABiosciences Company) to analysis of 12 laryngeal cancer and 6 paracancer tissues. **Results** Hypermethylation was detected in 66.7% of the cancer tissue (8/12) and none in paracancer tissue (0/6) (P < 0.05); the difference was significant. Among the clinical cancer tissue of each clinical stage , there was no significant difference of MiR-129-2 hypermethylation rate (P > 0.05). There was no significant difference of MiR-129-2 hypermethylation rate between two pathologic grades (P > 0.05). **Conclusion** The methylation level of MiR-129-2 is higher in laryngeal cancer tissue than in paracancer tissue, indicating that it may play a role in laryngeal cancer. The methylation level of MiR-129-2 may not be related with the clinical stage of laryngeal cancer.

Key words : Laryngeal neoplasms , cancer ; MicroRNA ; Methylation

微小 RNA(microRNA)是一类高度保守的非编码蛋白质小 RNA 分子,它通过在后转录水平对目标信使 RNA(mRNA)的降解

或抑制,达到调节基因表达的目的^[1]。MiR-129-2 基因位于染色体 11p11.2,目前其 预测目标信使 RNA 主要包括 SOX4 以及 GALNT1。有文献报道 MiR-129-2 在子宫内 膜癌、胃癌、膀胱癌中表达下调,其预测靶 基因 SOX4 表达增加,患者总体生存率明显 降低^[24]。当向子宫内膜癌细胞中转染 MiR-

基金项目:本研究受到《鼻咽癌纯瘤组织中分子标记物筛选及 其临床应用研究》(北京市首都发展基金重点项目,编号 No. SF07-11-01)项目资助。 作者简介:杜 晨,男,住院医师。

通讯作者:刘仲奇, Email: zhongqiliu@126. com.

129-2 后, SOX4 表达下调, 肿瘤生长受到抑制^[2]。说明 MiR-129-2 在子宫内膜癌中可能扮演了抑癌基因的角色。SOX4 基因位于染色体 6p22.3, 其表达产物是一种能够调节祖细胞发育以及 Wnt 信号转导通路的细胞因子。有学者研究发现 Wnt 信号传导通路在头颈部鳞癌中被激活^[5], 提示 Wnt 通路可能对头颈部鳞癌的发生发展发挥着重要作用。

甲基化是一种基因的表观遗传学修饰 方式。在哺乳动物中几乎所有 DNA 甲基化 发生在 CpG 二核苷酸序列的 5 ′胞嘧啶上。 染色体中含有高密度 CpG 双联体的区域被 称为 CpG 岛,这些区域发生甲基化与基因 转录抑制有关^[6]。基因启动子甲基化被认 为是一种调节肿瘤细胞中原癌基因活性的 表观遗传学修饰机制^[78]。研究发现在子宫 内膜癌中 MiR-129-2 的启动子区呈高甲基 化状态。当使用药物去除 MiR-129-2 启动 子甲基化时, SOX4 表达下调, 肿瘤细胞增 长受到抑制^[2]。说明 MiR-129-2 低表达可 能与启动子区发生甲基化有关。本研究拟 观察喉癌肿瘤及癌旁组织中 MiR-129-2 基 因启动子区甲基化水平,探讨喉癌发展过程 中 MiR-129-2 的甲基化规律及分子机制。

1 资料与方法

1.1 材料

收集 2009 年 6 月 ~ 2010 年 3 月北京 大学第三医院和北京大学第一医院收治住 院的 12 例男性喉癌患者,年龄 39 ~ 79 岁, 平均年龄 59.9 岁;同时选取其中 6 例配对 癌旁组织标本。癌组织取于肿瘤中心区域的 组织;癌旁组织距肿瘤安全缘 1 ~ 1.5 cm。 组织离体后立即切成厚度为 0.5 mm 小块放 入 RNAlater[®]溶液中置于 - 20℃冰箱中保存。 根据国际抗癌协会(UICC) 2002 年 TNM 分类 标准对喉癌标本进行分级。所有患者术前未 进行放、化疗。

1.2 方法

1.2.1 DNA 提取 取 50 mg 组织,按照饱和酚-氯仿法提取组织 DNA。应用电泳法及紫外分光光度计测定 DNA 的浓度及纯度。 1.2.2 荧光实时定量 PCR 检测 DNA 甲基

① 酶 切: 应 用 SABiosciences 公 司 化程度 Methyl - Profiler[™] DNA 甲基化 PCR 系统对样本 DNA 进行酶切处理见表1。其中处理无内 切酶(Mo)即不加入任何限制性内切酶;处 理甲基化敏感酶(Ms)即加入甲基化敏感酶 (HahI),可切开非甲基化以及部分甲基化 的 DNA 序列, 仅保留高甲基化 DNA 序列: 处 理甲基化依赖酶(Md)即加入甲基化依赖酶 (Merbc),可切开任何甲基化的 DNA 序列, 只留下非甲基化序列;处理两种内切酶 (Msd) 同时加入甲基化敏感酶及甲基化依 赖酶。反应条件:37℃ 15 h,65℃ 20 min。 ②荧光实时定量 PCR:利用 UCSC Genome-Browser 系统检索 MiR-129-2 基因启动子序 列,根据其5端上游启动子所在区域的序列 设计 PCR 引物,并由上海生工生物有限公 司合成:上游 5′-GGACGGTCTGGAGAAATGGA-GA-3′,下游5′-GATTCGCGAAGGGCAGAATA-TG - 3 $^{\prime}$ $_{\odot}$

应用罗氏 LightCycler[®] 480 荧光定量 PCR 仪对酶切产物进行 Real-time PCR。反应体 系:酶切产物 4 μl,上游引物 0.5 μl,下游 引物 0.5 μl,双蒸水 4 μl,荧光染料 SYBR[®] 1 μl,荧光定量 PCR Mix 10 μl。PCR 反应条 件见表 2。

表1 Methyl - Profiler[™] DNA 甲基化 PCR 酶切处理

	,			
DNA	无内 切酶	甲基化 敏感酶	甲基化 依赖酶	两种 内切酶
Mo	25 µl	24 µl	24 µl	23 µl
Ms	-	1 µl	-	1 µl
Md	-	-	1 µl	1 µl
总量	25 µl	25 µl	25 µl	25 µl

表2 荧光实时定量 PCR 反应条件

循环数	温度(℃)	持续时间
1	95	10 min
40	95	30 s
	68	40 s
1	70	1 s
	99(升温速度0.07℃/s)	升至即降温
1	37	2 min

通 过 $C_{Mo} = 2^{-CtMo}$ 、 $C_{Ms} = 2^{-CtMs}$ 、 $C_{Md} = 2^{-CtMd}$ 、 $C_{Msd} = 2^{-CtMsd}$ 公式得出不同酶切处理 后目标 DNA 序列的初始量,然后依据 $F_{R} = C_{Msd} / C_{Mo} = 2^{-CtMsd} / 2^{-CtMo} = 2^{-\Delta Ct(Msd-Mo)}$ 公式对酶切效率进行计算评价。

当 Ct_{Msd} - Ct_{Mo} > 2 说明超过 75%的 DNA 进行了酶切,实验结果可信。最后通过两种 不同酶切处理得到的初始目标 DNA 序列浓 度与总初始目标 DNA 序列浓度进行比较, 分别计算出高甲基化序列及非甲基化序列 的含量。 $F_{HM} = C_{Ms}/C_{Mo} = 2^{-CIMs}/2^{-CIMo} = 2^{-\Delta C1(Ms-Mo)}$, $F_{UM} = C_{Md}/C_{Mo} = 2^{-CIMd}/2^{-CIMo} = 2^{-\Delta C1(Ms-Mo)}$ 。将 Ct 值带入上述公式,最终得出该样本 MiR-129-2 基因高甲基化及低甲 基化程度。当高甲基化序列含量 > 10%, 认为该样本 MiR-129-2 基因处于高甲基化 状态。

1.3 统计学分析

应用 PASWStatistics 18.0 统计软件包对数 据行四格表精确概率计算。P < 0.05 时差 异具有统计学意义。

2 结果

2.1 组织标本临床资料

12 例喉癌组织标本经北京大学第三医院和北京大学第一医院病理科石蜡病理切片检查,均为鳞状细胞癌。其中高分化5例, 中分化7例; 声门上型4例, 声门型7例, 跨声门型1例; T₁ N₀ M₀ 1例, T₂ N₀ M₀ 2例, T₂ N₁ M₁ 1例, T₃ N₀ M₀ 5例, T₃ N₂ M₀ 1例, T₄ N₀ M₀ 1例, T₄ N₁ M₁ 1例。

2.2 喉 癌 及 癌 旁 组 织 酶 切 产 物 荧 光 定 量 PCR

2.2.1 荧光实时定量PCR 熔解曲线
(图1) 分析熔解曲线,发现绝大部分反应只有一个峰,并未出现非特异性扩增,说

明反应顺利,引物设计成功。极少部分反应 出现双峰,大多集中于两种内切酶(Msd)处 理,考虑与酶切后,小片段 DNA 形成互补双 链所致。

2.2.2 荧光实时定量 PCR 扩增曲线 (图2) 横坐标为反应的循环次数,纵坐标为荧光强度。红色横线代表人为设定的 荧光强度。当反应体系的荧光强度达到这 一标准时,得到其对应横坐标-反应循环次数,即不同标本 Ct 值。结果见表 3,4。根据甲基化序列计算得出每一个标本的高甲 基化率,结果见表 5。

图1 熔解曲线

图 2 扩增曲线

2.3 喉癌肿瘤组织及癌旁组织中 MiR-129-2 高甲基化率

根据 Methyl - Profiler[™] DNA 甲基化系统说明,取 HM > 10% 为高甲基化状态。计算得出 MiR - 129 - 2 在喉癌及癌旁组织中高甲基 化率,结果见表 6。

表 3 喉癌组织酶切产物 Ct 值

 $(\bar{x} \pm s)$

编号	Мо	Ms	Md	Msd	$\Delta Ct(Msd-Mo)$
001 A	22.56541554	33.01137639	26.7992898	32.9518181	10.38640256
002B	22.30999325	23.34807716	23.54601281	28.53133633	6.22134308
003B	23.12201502	28.29398379	23.15439816	29.74767458	6.625659561

杜 晨,等:喉癌组织中微小 RNA-129-2 基因甲基化程度的研究

第6期

续上表					
编号	Мо	Ms	Md	Msd	$\Delta Ct(Msd-Mo)$
004A	22.62600694	24.04630908	25.42421327	28.8258592	6.199852269
008A	23.12841852	24.52728173	24.45642103	30.85760643	7.729187906
009A	22.28026857	24.08104896	23.44928293	28.98550223	6.705233658
010B	22.71547668	24.61096872	23.75163817	29.47217475	6.75669807
013B	22.0667675	24.2518253	21.71316182	28.12100315	6.054235649
014A	24.0576565	25.35765664	25.69861789	28.96168056	4.904024059
016B	22.34811575	31.81964492	22.19444547	34.59489629	12.24678054
019B	22.55301474	29.97105198	22.69523159	33.2002686	10.64725386
023B	22.85584967	22.9500043	22.37473829	27.91226546	5.056415788

		表4 癌旁组纠	只酶切产物 Ct 值		$(\bar{x} \pm s)$
编号	Мо	Ms	Md	Msd	$\Delta Ct(Msd-Mo)$
002D	22.31195073	27.17383377	22.70375874	29.96740746	7.655456725
003 D	22.77501091	28.91964317	23.30011805	30.72290636	7.947895455
013D	21.51229097	28.76370169	21.2545576	31.79962132	10.28733035
014D	23.28735363	30.56241926	23.17488813	32.44568539	9.158331765
019C	22.2617507	32.27272068	22.39051849	32.49179	10.23003931
023D	22.28963128	30.22258642	22.91539655	32.77966079	10.49002951

表 5 MiR-129-2 在喉癌及癌旁组织组织中高甲基化程度

 $(\bar{x} \pm s)$

癌组织	高甲基化率(%)	癌旁组织	高甲基化率(%)
001 A	0.07	-	-
002B	48.70	002D	3.44
003 B	2.77	003 D	1.41
004 A	37.36	-	-
008 A	37.92	-	-
009A	28.70	-	-
010B	26.88	-	-
013B	21.99	013D	0.66
014A	40.61	014D	0.65
016B	0.14	-	-
019B	0.58	019C	0.10
023B	50.00	023 D	0.41

表 6 MiR-129-2 在喉癌组织及癌旁组织中高甲基化率 $(\bar{x} \pm s)$

	全部癌及癌旁组织		立田甘 仏索 D	配对癌及	配对癌及癌旁组织		D	
·	高甲基化	非甲基化	- 尚中基化率 P —	高甲基化	非甲基化	一 向甲基化平	P	
癌组织	8	4	8/12	0.01	4	2	4/6	0.06
癌旁组织	0	6	0/6		0	6	0/6	
总数	8	10			4	6		

经 Fisher 精确检验, P = 0.01。说明 MiR-129-2 基因高甲基化率在喉癌组织及 癌旁组织中有显著性差异。全部喉癌组织 标本中, 肿瘤组织 MiR-129-2 基因启动子 甲基化程度高于癌旁组织。

6 对配对标本中, MiR-129-2 基因启动 子在癌组织中高甲基化率为4/6,在癌旁组 织中为0/6。Fisher 精确检验, P = 0.06。 配对标本高甲基化率对比,结果见图3。

2.4 MiR-129-2 高甲基化率与临床病理 参数的关系见表 7

从表中可以看出, MiR-129-2 基因高甲 基化率与 TNM 临床分级差异无统计学意义 (*P* > 0.05)。喉癌肿瘤组织 MiR - 129-2 高甲基化率与病理分化程度差异无统计学 意义(P > 0.05)。

图 3 配对标本高甲基化率对比

表 7 MiR-129-2 高甲基化率与临床病理参数的关系

临床病理参数		非甲基化	高甲基化	高甲基化率	Р
TNM 分级	$T_1N_0M_0$	1	0	0/1	0.39
	$T_2 N_x M_x^{\ a}$	1	2	2/3	
	$T_{3}N_{x}M_{x}^{b}$	2	4	4/6	
	$T_4N_xM_x{}^{\rm c}$	0	2	2/2	
病理分化	高分化	1	4	4/5	0.57
	中分化	3	4	4/7	

注: "T₂N_xM_x 包括 T₂N₀M₀ 2 例、T₂N₁M₁ 1 例; "T₃N_xM_x 包括 T₃N₀M₀ 5 例、T₃N₂M₀ 1 例; "T₄N_xM_x 包括 T₄N₀M₀ 1 例、T₄N₁M₁ 1 例

3 讨论

3.1 MiR-129-2 与其下游靶基因

MiR-129-2 是微小 RNA 中的一员, 其基 因位于染色体 11p11.2。根据计算机预测 其下游靶基因可能为 SOX4^[3](the SRY-related high-mobility group box 4 gene)。SOX4 被 认为是一种原癌基因, 位于染色体 6p22.3, 其表达产物是一种能够调节祖细胞发育以 及 Wnt 信号转导通路的细胞因子, 在 Wnt 通 路调节过程中扮演了重要作用。有文献报 道, SOX4 可与 β-连环蛋白直接发生作用, 并与其一起激活 Wnt 通路下游基因的表 达^[9+0]。同时有文献报道它在乳腺癌^[11]、肺 癌^[12]、结肠癌^[13]、髓母细胞瘤^[14]、涎腺癌^[15] 以及肝癌^[16]中表达上调。

甲基化是一种基因的表观遗传学修饰 方式,它本身并不改变基因的碱基顺序。发 生甲基化的基因转录受到影响,因而引起表达量的降低。在子宫内膜癌中,MiR-129-2 基因启动子区会发生甲基化会使本身表达降低,进而引起 SOX4 表达上调^[2]。因此考虑 MiR-129-2 基因高甲基化可能与乳腺癌、肺癌、肝癌等肿瘤的发生有关。本研究首次应用 Methyl-Profiler[™] DNA 甲基化 PCR 系统对喉癌及癌旁组织中 MiR-129-2 基因进行甲基化分析,以揭示其在喉癌发生、发展过程中的甲基化规律及其发病机制。

本研究采用了甲基化敏感的限制性内切 酶与荧光实时定量 PCR 相结合的方法 Methyl-Profiler[™] DNA 甲基化 PCR 系统来检测目标 片段的甲基化程度。该方法结合了限制性内 切酶与荧光实时定量 PCR 的优势,避免了应 用亚硫酸氢钠所带来的 DNA 处理不完全和 DNA 降解等问题,同时解决了低通量的缺 点。但是这种方法仍受到某些条件的制约, 若目的基因片段并不含有限制性内切酶的酶 切位点,则不适用于此种方法。

3.2 MiR-129-2 甲基化程度分析

对所有癌及癌旁组织 MiR-129-2 甲基 化程度分析,说明 MiR-129-2 高甲基化率 在癌和癌旁组织中有显著性差异,癌组织中 MiR-129-2 基因甲基化水平升高。这与 Huang 等^[2] 在子宫内膜癌中的研究结果相 同。说明 MiR-129-2 基因启动子区高甲基 化可能与喉癌的发生有关, MiR-129-2 基因 有可能在其中扮演抑癌基因的角色。由于 基因表达和甲基化水平可能存在个体差异, 因此对 6 例患者癌及癌旁组织中 MiR-129-2 甲基化程度进行分析。结果无显著性差异, 但其趋势显而易见,癌组织高甲基化率 4/6, 癌 旁 组 织 高 甲 基 化 率 0/6。考 虑 这 与 本研究样本量较小有关。拟继续增加实验 样本数量进行观察。分析 MiR-129-2 甲基 化程度与肿瘤 TNM 分级以及肿瘤组织病理 分化程度之间的关系,发现 MiR-129-2 高 甲基化率在肿瘤 TNM 分级中无显著性差 异。首先考虑这可能是由于影响肿瘤 TNM 分级的因素很多,如就诊时间、肿瘤恶性程 度、生长部位以及影响肿瘤生长、侵袭的其 他基因等;其次本研究样本量较少,需进一 步扩大样本量以进行观察。分析 MiR-129-2 甲基化程度与肿瘤组织病理分化程度之间的 关系。结果显示 MiR-129-2 高甲基化程度 在高、中分化鳞癌中亦无显著性差异。该初 步结论仍需进一步增加样本量继续观察。

微小 RNA 基因是一类非编码蛋白质基 因,本身并不会通过蛋白质直接发挥作用, 而是通过调节下游靶基因的表达而实现其 功能。有学者推测,每一种微小 RNA 可调 节许多目标信使 RNA,而每一种信使 RNA 又受到不止一种微小 RNA 的作用^[17]。本研 究样本量较小,且仅对喉癌及癌旁组织中 MiR-129-2 基因甲基化程度的差异性进行 了分析,并没有研究当这种基因发生甲基化 之后,MiR-129-2 的表达会发生何种变化, 以及其下游靶基因的表达是否受到激活或 抑制。

故应继续扩大样本量,观察 MiR-129-2 启动子区在喉癌及癌旁组织中甲基化程度。 同时提取组织总 RNA、进行免疫组化实验, 观察 MiR-129-2 及下游靶基因 SOX4 的在 喉癌及癌旁组织中的表达情况。并进行细 胞实验研究,人为制造 MiR-129-2 甲基化 及去甲基化,观察其本身和下游靶基因的表 达情况。

参考文献:

- [1] Chen CZ, MicroRNAs as oncogenes and tumor suppressors [J]. New England Journal of Medicine, 2005, 353 (17): 1768 - 1771.
- [2] Huang YW, Liu JC, Deatherage DE, et al. Epigenetic Repression of microRNA-129-2 Leads to Overexpression of SOX4 Oncogene in Endometrial Cancer [J]. Cancer Res, 2009, 69(23): 9038 - 9046.
- [3] Dyrskjot L, Ostenfeld MS, Bramsen JB, et al. Genomic Profiling of MicroRNAs in Bladder Cancer: miR-129 Is Associated with Poor Outcome and Promotes Cell Death In vitro [J]. Cancer Res, 2009, 69(11): 4851-4860.
- [4] Shen R, Pan S, Qi S, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer [J]. Biochemical and Biophysical Research Communications, 2010, 394(4): 1047 - 1052.
- [5] Díaz Prado S, Medina Villaamil V, Aparicio Gallego G, et al. Expression of Wnt gene family and frizzled receptors in head and neck squamous cell carcinomas [J]. Virchows Archiv, 2009, 455(1):67-75.
- [6] Goldberg AD, Allis CD, Bernstein E, Epigenetics: a landscape takes shape [J]. Cell, 2007, 128(4): 635 -638.
- [7] Jones PA, Baylin SB, The epigenomics of cancer [J]. Cell, 2007, 128(4): 683-692.
- [8] Baylin SB, Ohm JE, Epigenetic gene silencing in cancer a mechanism for early oncogenic pathway addiction [J]. Nature Reviews, 2006, Cancer, 6(2): 107 - 116.
- [9] Sinner D , Kordich JJ , Spence JR , et al. Sox 17 and Sox 4 Differentially Regulate { beta } - Catenin / T - Cell Factor Activity and Proliferation of Colon Carcinoma Cells [J] . Mol Cell Biol , 2007 , 27 (22) : 7802 - 7815.
- [10] Scharer CD, McCabe CD, Ali-Seyed M, et al. Genome-Wide Promoter Analysis of the SOX 4 Transcriptional Network in Prostate Cancer Cells [J]. Cancer Res, 2009, 69 (2): 709 - 717.
- [11] Graham JD, Hunt SM, Tran N, et al. Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators [J]. Journal of Molecular Endocrinology, 1999, 22(3): 295 - 304.
- [12] Friedman RS, Bangur CS, Zasloff EJ, et al. Molecular and immunological evaluation of the transcription factor SOX -4 as a lung tumor vaccine antigen [J]. Journal of Immunology, 2004, 172(5): 3319 - 3327.

(下转第418页)