机器学习在垂体腺瘤研究中的应用进展
作者:
基金项目:

北京市卫生系统高层次卫生技术人才培养计划(2013-3-09)。


Research progress in the application of machine learning in diagnoses of pituitary adenoma
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    垂体腺瘤(PA)是一种起源于鞍区常见的良性肿瘤。随着检查技术的发展,其发病率逐年升高。又由于PA的临床表现丰富、病理类型多样,相应的治疗手段不同,导致相关的研究数据复杂。同时其诊治方案的选择及预后主要依靠医师的临床经验,给PA的相关研究带来了巨大挑战。机器学习作为人工智能领域的一种新的研究方法,可做到数据的深度发掘与分类,使预测结果的准确性得以提高,为治疗及预后的判断提供了有力帮助。本文就近年来机器学习在PA诊疗中的应用进展作一综述。

    Abstract:

    Pituitary adenoma (PA) is a common benign tumor originating in the sellar region. With the development of the examination technology, the incidence of PA has been increasing yearly. However, the related research data has become complex due to the diverse clinical manifestations, various pathological types of PA, and different treatment approaches. Additionally, previous diagnosis and treatment methods of PA are mainly based on the clinical experience of doctors, which brings great challenges to the related research of PA. As a new research method in the field of artificial intelligence, machine learning can achieve in-depth excavation and classification of data. Machine learning can improve the accuracy of prediction results and provide strong assistance in treatment and prognosis assessment.This paper provides a comprehensive review of recent advances in the application of machine learning in diagnosing and treating PA.

    参考文献
    相似文献
    引证文献
引用本文

侯思源,王振霖.机器学习在垂体腺瘤研究中的应用进展[J].中国耳鼻咽喉颅底外科杂志,2023,29(3):40-44

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-06-17
  • 在线发布日期: 2023-07-03
温馨提示

本刊唯一投稿网址:www.xyosbs.com
唯一办公邮箱:xyent@126.com
编辑部联系电话:0731-84327210,84327469
本刊从未委托任何单位、个人及其他网站代理征稿及办理其他业务联系,谨防上当受骗!

关闭