基于随机森林与人工神经网络慢性鼻窦炎伴鼻息肉诊断模型的构建与分析
作者:
基金项目:

国家自然科学基金面上项目(82074581)。


Construction and analysis on the diagnostic model of chronic rhinosinusitis with nasal polyps based on random forest and artificial neural network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    目的 慢性鼻窦炎伴鼻息肉(CRSwNP)是一个全球性的健康问题,现有的诊断技术存在一定局限性,因此有必要开发新的诊断模型来补充现有的诊断方法。方法 利用CRSwNP患者(GSE23552、GSE36830)的公开基因表达数据来识别潜在的差异基因,应用随机森林算法和人工神经网络进一步筛选特异性基因,建立CRSwNP的早期诊断模型。结果 共发现78个上调基因和25个下调基因,随机森林算法筛选了4个特异性基因(HPGDS、IL1RL1、FMO3、DOK3),人工神经网络构建出基于上述基因的预测模型,该模型具有良好的预测效果(AUC=0.986),独立数据集GSE194282进一步验证了其准确性(AUC=0.888)。结论 采用机器学习方法建立了一个基于基因表达水平的预测模型,该模型可以预测早期CRSwNP,有助于早期诊断和改善临床决策。

    Abstract:

    Objective Chronic rhinosinusitis with nasal polyps (CRSwNP) is a global health problem, and the existing diagnostic techniques have some limitations. Therefore, it is necessary to develop new diagnostic models to supplement the existing diagnostic methods.Methods The public gene expression data of CRSwNP patients (GSE23552, GSE36830) were used to identify potential differential genes. The random forest algorithm and artificial neural network were used to screen specific genes and establish the early diagnosis model of CRSwNP.Results A total of 78 up-regulated genes and 25 down-regulated genes were identified. Four specific genes (HPGDS, IL1RL1, FMO3 and DOK3) were screened by random forest algorithm. The prediction model based on the above genes was constructed by artificial neural network, which had good prediction effect (area under the curve=0.986). Independent dataset GSE194282 further verified the accuracy (area under the curve=0.888).Conclusions A predictive model based on gene expression level is established by machine learning method. This model can predict early CRSwNP, which is helpful for early diagnosis and clinical decision.

    网友评论
    网友评论
    分享到微博
    发 布
    参考文献
    [1] Bachert C, Bhattacharyya N, Desrosiers M, et al. Burden of disease in chronic rhinosinusitis with nasal polyps[J]. J Asthma Allergy, 2021, 14: 127-134.
    [2] Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis[J]. Nat Rev Dis Primers, 2020, 6(1): 86.
    [3] Feng J, Chen Y, Feng Q, et al. Novel gene signatures predicting primary non-response to infliximab in ulcerative colitis: development and validation combining random forest with artificial neural network[J]. Front Med (Lausanne), 2021, 8: 678424.
    [4] 王平,郝蕴,赵妍,等.基于生物信息学方法对慢性鼻窦炎伴鼻息肉差异基因表达的分析[J].解放军医学院学报,2021,42(11):1180-1187.
    [5] 蓝凤,王麒淇,张罗.慢性鼻窦炎伴鼻息肉鼻黏膜上皮细胞基因转录组分析[J].中华耳鼻咽喉头颈外科杂志,2021,56(10):1066-1072.
    [6] Hao Y, Zhao Y, Wang P, et al. Transcriptomic signatures and functional network analysis of chronic rhinosinusitis with nasal polyps[J]. Front Genet, 2021, 12: 609754.
    [7] Feng T, Miao P, Liu B, et al. Sinus microbiota in patients with eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Front Cell Infect Microbiol, 2021, 11: 672355.
    [8] 高雅丽,王威清,朱真真,等.趋化因子在嗜酸性慢性鼻-鼻窦炎伴鼻息肉中的价值研究[J].临床耳鼻咽喉头颈外科杂志,2017,31(18):1458-1461.
    [9] Wu M, Zheng X, Huang J, et al. Association of IL33, IL1RL1, IL1RAP polymorphisms and asthma in Chinese Han children[J]. Front Cell Dev Biol, 2021, 9: 759542.
    [10] Kim DK, Jin HR, Eun KM, et al. The role of interleukin-33 in chronic rhinosinusitis[J]. Thorax, 2017, 72(7): 635-645.
    [11] Ryu G, Kim DW. Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis[J]. Curr Opin Allergy Clin Immunol, 2020, 20(1): 1-8.
    [12] Thamboo A, Kilty S, Witterick I, et al. Canadian rhinology working group consensus statement: biologic therapies for chronic rhinosinusitis[J]. J Otolaryngol Head Neck Surg, 2021, 50(1): 15.
    [13] 陈灵修,冉丹华,黄华萍,等.前列腺素D2受体调节PGD2诱导的人气道黏液高分泌[J].基础医学与临床,2016,36(1):24-29.
    [14] Yamamoto M, Okano M, Fujiwara T, et al. Expression and characterization of PGD2 receptors in chronic rhinosinusitis: modulation of DP and CRTH2 by PGD2[J]. Int Arch Allergy Immunol, 2009, 148(2): 127-136.
    [15] Choi YH, Lee S, Aoyagi H, et al. The extracellular signal-regulated kinase mitogen-activated protein kinase/ribosomal S6 protein kinase 1 cascade phosphorylates cAMP response element-binding protein to induce MUC5B gene expression via D-prostanoid receptor signaling[J]. J Biol Chem, 2011, 286(39): 34199-34214.
    [16] Guan Y, Li M, Qiu Z, et al. Comprehensive analysis of DOK family genes expression, immune characteristics, and drug sensitivity in human tumors[J]. J Adv Res, 2022, 36: 73-87.
    [17] Kim SS, Lee K, Chin C, et al. DOK3 is required for IFN-β production by enabling TRAF3/TBK1 complex formation and IRF3 activation[J]. J Immunol, 2014, 193(2): 840-848.
    [18] Yang Z, Stemmer PM, Petriello MC. Proteomics-based identification of interaction partners of the xenobiotic detoxification enzyme FMO3 reveals involvement in urea cycle[J]. Toxics, 2022, 10(2): 60.
    [19] Gelardi M, Giancaspro R, Cassano M, et al. The underestimated role of mast cells in the pathogenesis of rhinopathies[J]. Int Arch Allergy Immunol, 2022, 183(2): 153-159.
    [20] Kaczmarek M, Banaszewski J, Leszczyńska M, et al. High frequency of macrophages expressing elevated level of CD80, PD-Ls and TLR1 in nasal polyps of CRS patients[J]. Immunobiology, 2019, 224(1): 154-162.
    [21] Wang Z, Yao Y, Wang N, et al. Deficiency in interleukin-10 production by M2 macrophages in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2018, 8(11): 1323-1333.
    [22] Kaczmarek M, Wasicka K, Tin-Tsen Chou J, et al. NK cells in patients with chronic rhinosinusitis show decreased maturity and limited expression of functional receptors[J]. Immunobiology, 2020, 225(2): 151890.
    [23] Ickrath P, Kleinsasser N, Ding X, et al. Characterization of T-cell Subpopulations in Patients with Chronic Rhinosinusitis with Nasal Polyposis[J]. Allergy Rhinol (Providence), 2017, 8(3): 139-147.
    [24] 吴鸿泉,刘展,覃宇铭.慢性鼻-鼻窦炎伴鼻息肉患者鼻内镜术后复发的危险因素及相关模型构建[J].中国耳鼻咽喉颅底外科杂志,2021,27(5):559-564.
    引证文献
引用本文

张浩鹏,王丽华,尹梓名,岑经途,吉琳,郭裕.基于随机森林与人工神经网络慢性鼻窦炎伴鼻息肉诊断模型的构建与分析[J].中国耳鼻咽喉颅底外科杂志,2023,29(1):24-30

复制
分享
文章指标
  • 点击次数:314
  • 下载次数: 415
历史
  • 收稿日期:2022-04-15
  • 在线发布日期: 2023-03-03
温馨提示

本刊唯一投稿网址:www.xyosbs.com
唯一办公邮箱:xyent@126.com
编辑部联系电话:0731-84327210,84327469
本刊从未委托任何单位、个人及其他网站代理征稿及办理其他业务联系,谨防上当受骗!

关闭