基于随机森林与人工神经网络的慢性鼻窦炎伴鼻息肉诊断模型构建与分析
DOI:
作者:
作者单位:

1.上海中医药大学附属市中医医院;2.上海理工大学健康科学与工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目82074581)


Construction and analysis on the diagnostic model of chronic rhinosinusitis with nasal polyp based on random forest and artificial neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的:慢性鼻窦炎伴鼻息肉(chronic rhinosinusitis with nasal polyps, CRSwNP)是一个全球性的健康问题,现有的诊断技术存在一定局限性,因此有必要开发新的诊断模型来补充现有的诊断方法。方法:利用CRSwNP患者(GSE23552、GSE36830)的公开基因表达数据来识别潜在的差异基因,应用随机森林算法和人工神经网络进一步筛选特异性基因,建立CRSwNP的早期诊断模型。结果:共发现78个上调基因和25个下调基因,随机森林算法筛选了4个特异性基因(HPGDS、IL1RL1、FMO3、DOK3),人工神经网络构建出基于上述基因的预测模型,该模型具有良好的预测效果(AUC=0.986),独立数据集GSE194282进一步验证了其准确性(AUC=0.888)。结论:采用机器学习方法建立了一个基于基因表达水平的预测模型,该模型可以预测早期CRSwNP,有助于早期诊断和改善临床决策。

    Abstract:

    Objective Chronic rhinosinusitis with nasal polyp (CRSwNP) is a global health problem, and the existing diagnostic techniques have some limitations. Therefore, it is necessary to develop new diagnostic model to supplement the existing diagnostic methods. Methods The public gene expression data of CRSwNP patients (GSE23552, GSE36830) were used to identify potential differential genes. The random forest algorithm and artificial neural network were used to screen specific genes and establish the early diagnosis model of CRSwNP. Results A total of 78 up-regulated genes and 25 down-regulated genes were identified. Four specific genes (HPGDS, IL1RL1, FMO3 and DOK3) were screened by random forest algorithm. The prediction model based on the above genes was constructed by artificial neural network, which had good prediction effect (AUC=0.986). Independent dataset GSE194282 further verified the accuracy (AUC=0.888). Conclusion A predictive model based on gene expression level is established by machine learning method. This model can predict early CRSwNP, which is helpful for early diagnosis and clinical decision making.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-04-15
  • 最后修改日期:2022-06-01
  • 录用日期:2022-06-07
  • 在线发布日期:
新投稿系统运行通知

作者投稿请直接点击左侧“作者登录”,请不要进入旧版入口。如登录或投稿中遇到任何问题,请联系电话13311390237。谢谢!

关闭